Package  Description 

org.jgrapht 
The frontend API's interfaces and classes, including
Graph . 
org.jgrapht.alg 
Algorithms provided with JGraphT.

org.jgrapht.alg.clique 
Clique related algorithms.

org.jgrapht.alg.color 
Graph coloring algorithms.

org.jgrapht.alg.connectivity 
Algorithms dealing with various connectivity aspects of a graph.

org.jgrapht.alg.cycle 
Algorithms related to graph cycles.

org.jgrapht.alg.flow 
Flow related algorithms.

org.jgrapht.alg.independentset 
Algorithms for Independent
Set in a graph.

org.jgrapht.alg.interfaces 
Algorithm related interfaces.

org.jgrapht.alg.isomorphism 
Algorithms for (sub)graph isomorphism.

org.jgrapht.alg.matching 
Algorithms for the computation of matchings.

org.jgrapht.alg.scoring 
Vertex and/or edge scoring algorithms.

org.jgrapht.alg.shortestpath 
Shortestpath related algorithms.

org.jgrapht.alg.spanning 
Spanning tree and spanner algorithms.

org.jgrapht.alg.tour 
Graph tours related algorithms.

org.jgrapht.alg.util 
Utilities used by JGraphT algorithms.

org.jgrapht.alg.vertexcover 
Vertex cover algorithms.

org.jgrapht.experimental 
Experimental work or workinprogress.

org.jgrapht.ext 
Extensions and integration means to other products.

org.jgrapht.generate 
Generators for graphs of various topologies.

org.jgrapht.graph 
Implementations of various graphs.

org.jgrapht.graph.builder 
Various builder for graphs.

org.jgrapht.graph.concurrent 
Implementations of various concurrent graph structures.

org.jgrapht.graph.guava 
Guava adapters.

org.jgrapht.io 
Importers/Exporters for various graph formats.

org.jgrapht.traverse 
Graph traversal means.

Modifier and Type  Interface and Description 

interface 
ListenableGraph<V,E>
A graph that supports listeners on structural change events.

Modifier and Type  Method and Description 

Graph<V,E> 
GraphPath.getGraph()
Returns the graph over which this path is defined.

static <V,E> Graph<V,E> 
GraphTests.requireDirected(Graph<V,E> graph)
Checks that the specified graph is directed and throws an
IllegalArgumentException if
it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirected(Graph<V,E> graph,
String message)
Checks that the specified graph is directed and throws a customized
IllegalArgumentException if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirectedOrUndirected(Graph<V,E> graph)
Checks that the specified graph is directed and throws an
IllegalArgumentException if
it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirectedOrUndirected(Graph<V,E> graph,
String message)
Checks that the specified graph is directed or undirected and throws a customized
IllegalArgumentException if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireUndirected(Graph<V,E> graph)
Checks that the specified graph is undirected and throws an
IllegalArgumentException
if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireUndirected(Graph<V,E> graph,
String message)
Checks that the specified graph is undirected and throws a customized
IllegalArgumentException if it is not. 
static <V,E> Graph<V,E> 
Graphs.undirectedGraph(Graph<V,E> g)
Returns an undirected view of the specified graph.

Modifier and Type  Method and Description 

static <V,E> boolean 
Graphs.addAllEdges(Graph<? super V,? super E> destination,
Graph<V,E> source,
Collection<? extends E> edges)
Adds a subset of the edges of the specified source graph to the specified destination graph.

static <V,E> boolean 
Graphs.addAllEdges(Graph<? super V,? super E> destination,
Graph<V,E> source,
Collection<? extends E> edges)
Adds a subset of the edges of the specified source graph to the specified destination graph.

static <V,E> boolean 
Graphs.addAllVertices(Graph<? super V,? super E> destination,
Collection<? extends V> vertices)
Adds all of the specified vertices to the destination graph.

static <V,E> E 
Graphs.addEdge(Graph<V,E> g,
V sourceVertex,
V targetVertex,
double weight)
Creates a new edge and adds it to the specified graph similarly to the
addEdge(Object, Object) method. 
static <V,E> boolean 
Graphs.addEdgeWithVertices(Graph<V,E> targetGraph,
Graph<V,E> sourceGraph,
E edge)
Adds the specified edge to the graph, including its vertices if not already included.

static <V,E> boolean 
Graphs.addEdgeWithVertices(Graph<V,E> targetGraph,
Graph<V,E> sourceGraph,
E edge)
Adds the specified edge to the graph, including its vertices if not already included.

static <V,E> E 
Graphs.addEdgeWithVertices(Graph<V,E> g,
V sourceVertex,
V targetVertex)
Adds the specified source and target vertices to the graph, if not already included, and
creates a new edge and adds it to the specified graph similarly to the
addEdge(Object, Object) method. 
static <V,E> E 
Graphs.addEdgeWithVertices(Graph<V,E> g,
V sourceVertex,
V targetVertex,
double weight)
Adds the specified source and target vertices to the graph, if not already included, and
creates a new weighted edge and adds it to the specified graph similarly to the
addEdge(Object, Object) method. 
static <V,E> boolean 
Graphs.addGraph(Graph<? super V,? super E> destination,
Graph<V,E> source)
Adds all the vertices and all the edges of the specified source graph to the specified
destination graph.

static <V,E> boolean 
Graphs.addGraph(Graph<? super V,? super E> destination,
Graph<V,E> source)
Adds all the vertices and all the edges of the specified source graph to the specified
destination graph.

static <V,E> void 
Graphs.addGraphReversed(Graph<? super V,? super E> destination,
Graph<V,E> source)
Adds all the vertices and all the edges of the specified source digraph to the specified
destination digraph, reversing all of the edges.

static <V,E> void 
Graphs.addGraphReversed(Graph<? super V,? super E> destination,
Graph<V,E> source)
Adds all the vertices and all the edges of the specified source digraph to the specified
destination digraph, reversing all of the edges.

static <V,E> void 
Graphs.addIncomingEdges(Graph<V,E> graph,
V target,
Iterable<V> sources)
Add edges from multiple source vertices to one target vertex.

static <V,E> void 
Graphs.addOutgoingEdges(Graph<V,E> graph,
V source,
Iterable<V> targets)
Add edges from one source vertex to multiple target vertices.

static <V,E> double 
GraphMetrics.getDiameter(Graph<V,E> graph)
Compute the diameter of the
graph.

static <V,E> int 
GraphMetrics.getGirth(Graph<V,E> graph)
Compute the girth of the graph.

static <V,E> V 
Graphs.getOppositeVertex(Graph<V,E> g,
E e,
V v)
Gets the vertex opposite another vertex across an edge.

static <V,E> double 
GraphMetrics.getRadius(Graph<V,E> graph)
Compute the radius of the graph.

static <V,E> boolean 
GraphTests.hasMultipleEdges(Graph<V,E> graph)
Check if a graph has multiple edges (parallel edges), that is, whether the graph contains two
or more edges connecting the same pair of vertices.

static <V,E> boolean 
GraphTests.hasOreProperty(Graph<V,E> graph)
Tests whether an undirected graph meets Ore's condition to be Hamiltonian.

static <V,E> boolean 
GraphTests.hasSelfLoops(Graph<V,E> graph)
Check if a graph has selfloops.

static <V,E> boolean 
GraphTests.isBiconnected(Graph<V,E> graph)
Tests if the inspected graph is biconnected.

static <V,E> boolean 
GraphTests.isBipartite(Graph<V,E> graph)
Test whether a graph is bipartite.

static <V,E> boolean 
GraphTests.isBipartitePartition(Graph<V,E> graph,
Set<? extends V> firstPartition,
Set<? extends V> secondPartition)
Test whether a partition of the vertices into two sets is a bipartite partition.

static <V,E> boolean 
GraphTests.isChordal(Graph<V,E> graph)
Checks whether a graph is chordal.

static <V,E> boolean 
GraphTests.isComplete(Graph<V,E> graph)
Test whether a graph is complete.

static <V,E> boolean 
GraphTests.isConnected(Graph<V,E> graph)
Test if the inspected graph is connected.

static <V,E> boolean 
GraphTests.isCubic(Graph<V,E> graph)
Tests whether a graph is cubic.

static <V,E> boolean 
GraphTests.isEmpty(Graph<V,E> graph)
Test whether a graph is empty.

static <V,E> boolean 
GraphTests.isEulerian(Graph<V,E> graph)
Test whether a graph is Eulerian.

static <V,E> boolean 
GraphTests.isForest(Graph<V,E> graph)
Test whether an undirected graph is a forest.

static <V,E> boolean 
GraphTests.isOverfull(Graph<V,E> graph)
Test whether a graph is overfull.

static <V,E> boolean 
GraphTests.isPerfect(Graph<V,E> graph)
Checks that the specified graph is perfect.

static <V,E> boolean 
GraphTests.isSimple(Graph<V,E> graph)
Check if a graph is simple.

static <V,E> boolean 
GraphTests.isSplit(Graph<V,E> graph)
Test whether an undirected graph is a
split graph.

static <V,E> boolean 
GraphTests.isStronglyConnected(Graph<V,E> graph)
Test whether a directed graph is strongly connected.

static <V,E> boolean 
GraphTests.isTree(Graph<V,E> graph)
Test whether an undirected graph is a tree.

static <V,E> boolean 
GraphTests.isWeaklyChordal(Graph<V,E> graph)
Checks whether a graph is weakly
chordal.

static <V,E> boolean 
GraphTests.isWeaklyConnected(Graph<V,E> graph)
Test whether a directed graph is weakly connected.

static <V,E> List<V> 
Graphs.neighborListOf(Graph<V,E> g,
V vertex)
Returns a list of vertices that are the neighbors of a specified vertex.

static <V,E> Set<V> 
Graphs.neighborSetOf(Graph<V,E> g,
V vertex)
Returns a set of vertices that are neighbors of a specified vertex.

static <V,E> List<V> 
Graphs.predecessorListOf(Graph<V,E> g,
V vertex)
Returns a list of vertices that are the direct predecessors of a specified vertex.

static <V,E> boolean 
Graphs.removeVertexAndPreserveConnectivity(Graph<V,E> graph,
Iterable<V> vertices)
Removes all the given vertices from the given graph.

static <V,E> boolean 
Graphs.removeVertexAndPreserveConnectivity(Graph<V,E> graph,
V vertex)
Removes the given vertex from the given graph.

static <V,E> boolean 
Graphs.removeVerticesAndPreserveConnectivity(Graph<V,E> graph,
Predicate<V> predicate)
Filters vertices from the given graph and subsequently removes them.

static <V,E> Graph<V,E> 
GraphTests.requireDirected(Graph<V,E> graph)
Checks that the specified graph is directed and throws an
IllegalArgumentException if
it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirected(Graph<V,E> graph,
String message)
Checks that the specified graph is directed and throws a customized
IllegalArgumentException if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirectedOrUndirected(Graph<V,E> graph)
Checks that the specified graph is directed and throws an
IllegalArgumentException if
it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireDirectedOrUndirected(Graph<V,E> graph,
String message)
Checks that the specified graph is directed or undirected and throws a customized
IllegalArgumentException if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireUndirected(Graph<V,E> graph)
Checks that the specified graph is undirected and throws an
IllegalArgumentException
if it is not. 
static <V,E> Graph<V,E> 
GraphTests.requireUndirected(Graph<V,E> graph,
String message)
Checks that the specified graph is undirected and throws a customized
IllegalArgumentException if it is not. 
static <V,E> List<V> 
Graphs.successorListOf(Graph<V,E> g,
V vertex)
Returns a list of vertices that are the direct successors of a specified vertex.

static <V,E> boolean 
Graphs.testIncidence(Graph<V,E> g,
E e,
V v)
Tests whether an edge is incident to a vertex.

static <V,E> Graph<V,E> 
Graphs.undirectedGraph(Graph<V,E> g)
Returns an undirected view of the specified graph.

static <V,E> boolean 
Graphs.vertexHasPredecessors(Graph<V,E> graph,
V vertex)
Check if a vertex has any direct predecessors.

static <V,E> boolean 
Graphs.vertexHasSuccessors(Graph<V,E> graph,
V vertex)
Check if a vertex has any direct successors.

Modifier and Type  Class and Description 

class 
BlockCutpointGraph<V,E>
Deprecated.
Moved to package org.jgrapht.connectivity

Modifier and Type  Method and Description 

Graph<V,E> 
BlockCutpointGraph.getBlock(V vertex)
Deprecated.
Returns the vertex if vertex is a cutpoint, and otherwise returns the block (biconnected
component) containing the vertex.

Modifier and Type  Method and Description 

<V,E> void 
TransitiveReduction.reduce(Graph<V,E> directedGraph)
This method will remove all transitive edges from the graph passed as input parameter.

Constructor and Description 

BiconnectivityInspector(Graph<V,E> graph)
Deprecated.
Running time = $O(m)$ where m is the number of edges.

BlockCutpointGraph(Graph<V,E> graph)
Deprecated.
Running time = $O(m)$ where m is the number of edges.

ConnectivityInspector(Graph<V,E> g)
Deprecated.
Creates a connectivity inspector for the specified graph.

CycleDetector(Graph<V,E> graph)
Deprecated.
Creates a cycle detector for the specified graph.

GabowStrongConnectivityInspector(Graph<V,E> graph)
Deprecated.
Constructor

KosarajuStrongConnectivityInspector(Graph<V,E> graph)
Deprecated.
Constructor

NaiveLcaFinder(Graph<V,E> graph)
Create a new instance of the naive LCA finder.

StoerWagnerMinimumCut(Graph<V,E> graph)
Will compute the minimum cut in graph.

TarjanLowestCommonAncestor(Graph<V,E> g)
Create an instance with a reference to the graph that we will find LCAs for

Modifier and Type  Method and Description 

Graph<V,E> 
CliqueMinimalSeparatorDecomposition.getGraph()
Get the original graph.

Graph<V,E> 
CliqueMinimalSeparatorDecomposition.getMinimalTriangulation()
Get the minimal triangulation of the graph.

Constructor and Description 

BronKerboschCliqueFinder(Graph<V,E> graph)
Constructs a new clique finder.

BronKerboschCliqueFinder(Graph<V,E> graph,
long timeout,
TimeUnit unit)
Constructs a new clique finder.

ChordalGraphMaxCliqueFinder(Graph<V,E> graph)
Creates a new ChordalGraphMaxCliqueFinder instance.

ChordalGraphMaxCliqueFinder(Graph<V,E> graph,
ChordalityInspector.IterationOrder iterationOrder)
Creates a new ChordalGraphMaxCliqueFinder instance.

CliqueMinimalSeparatorDecomposition(Graph<V,E> g)
Setup a clique minimal separator decomposition on undirected graph
g . 
DegeneracyBronKerboschCliqueFinder(Graph<V,E> graph)
Constructs a new clique finder.

DegeneracyBronKerboschCliqueFinder(Graph<V,E> graph,
long timeout,
TimeUnit unit)
Constructs a new clique finder.

PivotBronKerboschCliqueFinder(Graph<V,E> graph)
Constructs a new clique finder.

PivotBronKerboschCliqueFinder(Graph<V,E> graph,
long timeout,
TimeUnit unit)
Constructs a new clique finder.

Modifier and Type  Field and Description 

protected Graph<V,E> 
GreedyColoring.graph
The input graph

Constructor and Description 

ChordalGraphColoring(Graph<V,E> graph)
Creates a new ChordalGraphColoring instance.

ChordalGraphColoring(Graph<V,E> graph,
ChordalityInspector.IterationOrder iterationOrder)
Creates a new ChordalGraphColoring instance.

GreedyColoring(Graph<V,E> graph)
Construct a new coloring algorithm.

LargestDegreeFirstColoring(Graph<V,E> graph)
Construct a new coloring algorithm.

RandomGreedyColoring(Graph<V,E> graph)
Construct a new coloring algorithm.

RandomGreedyColoring(Graph<V,E> graph,
Random rng)
Construct a new coloring algorithm

SaturationDegreeColoring(Graph<V,E> graph)
Construct a new coloring algorithm.

SmallestDegreeLastColoring(Graph<V,E> graph)
Construct a new coloring algorithm.

Modifier and Type  Method and Description 

Graph<V,E> 
BlockCutpointGraph.getBlock(V vertex)
Returns the vertex if vertex is a cutpoint, and otherwise returns the block (biconnected
component) containing the vertex.

Graph<V,E> 
BiconnectivityInspector.getConnectedComponent(V vertex)
Returns the connected component containing the given vertex.

Modifier and Type  Method and Description 

Set<Graph<V,E>> 
BlockCutpointGraph.getBlocks()
Returns all blocks (biconnected components) in the graph

Set<Graph<V,E>> 
BiconnectivityInspector.getBlocks()
Returns all blocks (biconnected
components) in the graph.

Set<Graph<V,E>> 
BiconnectivityInspector.getBlocks(V vertex)
Returns a set of blocks (biconnected
components) containing the specified vertex.

Set<Graph<V,E>> 
BiconnectivityInspector.getConnectedComponents()
Returns all connected components in the graph.

Constructor and Description 

BiconnectivityInspector(Graph<V,E> graph)
Constructs a new BiconnectivityInspector

BlockCutpointGraph(Graph<V,E> graph)
Constructs a BlockCutpoint graph

ConnectivityInspector(Graph<V,E> g)
Creates a connectivity inspector for the specified graph.

GabowStrongConnectivityInspector(Graph<V,E> graph)
Constructor

KosarajuStrongConnectivityInspector(Graph<V,E> graph)
Constructor

Modifier and Type  Field and Description 

protected Graph<V,E> 
AbstractFundamentalCycleBasis.graph 
Modifier and Type  Method and Description 

Graph<V,E> 
SzwarcfiterLauerSimpleCycles.getGraph()
Returns the graph on which the simple cycle search algorithm is executed by this object.

Graph<V,E> 
HawickJamesSimpleCycles.getGraph()
Returns the graph on which the simple cycle search algorithm is executed by this object.

Graph<V,E> 
JohnsonSimpleCycles.getGraph()
Deprecated.
As not really needed.

Graph<V,E> 
TarjanSimpleCycles.getGraph()
Returns the graph on which the simple cycle search algorithm is executed by this object.

Graph<V,E> 
PatonCycleBase.getGraph()
Deprecated.
in favor of
CycleBasisAlgorithm 
Graph<V,E> 
TiernanSimpleCycles.getGraph()
Returns the graph on which the simple cycle search algorithm is executed by this object.

Graph<V,E> 
DirectedSimpleCycles.getGraph()
Deprecated.
Since not really needed on the interface.

Graph<V,E> 
UndirectedCycleBase.getGraph()
Deprecated.
Returns the graph on which the cycle base search algorithm is executed by this object.

Modifier and Type  Method and Description 

GraphPath<V,E> 
HierholzerEulerianCycle.getEulerianCycle(Graph<V,E> g)
Compute an Eulerian cycle of a graph.

boolean 
BergeGraphInspector.isBerge(Graph<V,E> g)
Performs the Berge Recognition Algorithm.

boolean 
BergeGraphInspector.isBerge(Graph<V,E> g,
boolean computeCertificate)
Performs the Berge Recognition Algorithm.

boolean 
HierholzerEulerianCycle.isEulerian(Graph<V,E> graph)
Test whether a graph is Eulerian.

void 
SzwarcfiterLauerSimpleCycles.setGraph(Graph<V,E> graph)
Sets the graph on which the simple cycle search algorithm is executed by this object.

void 
HawickJamesSimpleCycles.setGraph(Graph<V,E> graph)
Sets the graph on which the simple cycle search algorithm is executed by this object.

void 
JohnsonSimpleCycles.setGraph(Graph<V,E> graph)
Deprecated.
As not really needed.

void 
TarjanSimpleCycles.setGraph(Graph<V,E> graph)
Sets the graph on which the simple cycle search algorithm is executed by this object.

void 
PatonCycleBase.setGraph(Graph<V,E> graph)
Deprecated.
in favor of
CycleBasisAlgorithm 
void 
TiernanSimpleCycles.setGraph(Graph<V,E> graph)
Sets the graph on which the simple cycle search algorithm is executed by this object.

void 
DirectedSimpleCycles.setGraph(Graph<V,E> graph)
Deprecated.
Since not really needed on the interface.

void 
UndirectedCycleBase.setGraph(Graph<V,E> graph)
Deprecated.
Sets the graph on which the cycle base search algorithm is executed by this object.

static <V,E> GraphPath<V,E> 
Cycles.simpleCycleToGraphPath(Graph<V,E> graph,
List<E> cycle)
Transform a simple cycle from an edge set representation to a graph path.

Constructor and Description 

AbstractFundamentalCycleBasis(Graph<V,E> graph)
Constructor

ChordalGraphMinimalVertexSeparatorFinder(Graph<V,E> graph)
Creates new
ChordalGraphMinimalVertexSeparatorFinder instance. 
ChordalityInspector(Graph<V,E> graph)
Creates a chordality inspector for
graph , which uses
MaximumCardinalityIterator as a default iterator. 
ChordalityInspector(Graph<V,E> graph,
ChordalityInspector.IterationOrder iterationOrder)
Creates a chordality inspector for
graph , which uses an iterator defined by the
second parameter as an internal iterator. 
CycleDetector(Graph<V,E> graph)
Creates a cycle detector for the specified graph.

HawickJamesSimpleCycles(Graph<V,E> graph)
Create a simple cycle finder for the specified graph.

JohnsonSimpleCycles(Graph<V,E> graph)
Create a simple cycle finder for the specified graph.

PatonCycleBase(Graph<V,E> graph)
Create a cycle base finder for the specified graph.

QueueBFSFundamentalCycleBasis(Graph<V,E> graph)
Constructor

StackBFSFundamentalCycleBasis(Graph<V,E> graph)
Constructor

SzwarcfiterLauerSimpleCycles(Graph<V,E> graph)
Create a simple cycle finder for the specified graph.

TarjanSimpleCycles(Graph<V,E> graph)
Create a simple cycle finder for the specified graph.

TiernanSimpleCycles(Graph<V,E> graph)
Create a simple cycle finder for the specified graph.

WeakChordalityInspector(Graph<V,E> graph)
Creates a weak chordality inspector for the
graph 
Modifier and Type  Field and Description 

protected Graph<V,E> 
MaximumFlowAlgorithmBase.network 
Constructor and Description 

DinicMFImpl(Graph<V,E> network)
Constructor.

DinicMFImpl(Graph<V,E> network,
double epsilon)
Constructor.

EdmondsKarpMFImpl(Graph<V,E> network)
Constructs MaximumFlow instance to work with a copy of network.

EdmondsKarpMFImpl(Graph<V,E> network,
double epsilon)
Constructs MaximumFlow instance to work with a copy of network.

GusfieldEquivalentFlowTree(Graph<V,E> network)
Constructs a new GusfieldEquivalentFlowTree instance.

GusfieldEquivalentFlowTree(Graph<V,E> network,
double epsilon)
Constructs a new GusfieldEquivalentFlowTree instance.

GusfieldEquivalentFlowTree(Graph<V,E> network,
MinimumSTCutAlgorithm<V,E> minimumSTCutAlgorithm)
Constructs a new GusfieldEquivalentFlowTree instance.

GusfieldGomoryHuCutTree(Graph<V,E> network)
Constructs a new GusfieldEquivalentFlowTree instance.

GusfieldGomoryHuCutTree(Graph<V,E> network,
double epsilon)
Constructs a new GusfieldEquivalentFlowTree instance.

GusfieldGomoryHuCutTree(Graph<V,E> network,
MinimumSTCutAlgorithm<V,E> minimumSTCutAlgorithm)
Constructs a new GusfieldEquivalentFlowTree instance.

MaximumFlowAlgorithmBase(Graph<V,E> network,
double epsilon)
Construct a new maximum flow

PadbergRaoOddMinimumCutset(Graph<V,E> network)
Creates a new instance of the PadbergRaoOddMinimumCutset algorithm.

PadbergRaoOddMinimumCutset(Graph<V,E> network,
double epsilon)
Creates a new instance of the PadbergRaoOddMinimumCutset algorithm.

PadbergRaoOddMinimumCutset(Graph<V,E> network,
MinimumSTCutAlgorithm<V,E> minimumSTCutAlgorithm)
Creates a new instance of the PadbergRaoOddMinimumCutset algorithm.

PushRelabelMFImpl(Graph<V,E> network)
Construct a new pushrelabel algorithm.

PushRelabelMFImpl(Graph<V,E> network,
double epsilon)
Construct a new pushrelabel algorithm.

Constructor and Description 

ChordalGraphIndependentSetFinder(Graph<V,E> graph)
Creates a new ChordalGraphIndependentSetFinder instance.

ChordalGraphIndependentSetFinder(Graph<V,E> graph,
ChordalityInspector.IterationOrder iterationOrder)
Creates a new ChordalGraphIndependentSetFinder instance.

Modifier and Type  Method and Description 

Graph<Graph<V,E>,DefaultEdge> 
StrongConnectivityAlgorithm.getCondensation()
Compute the condensation of the given graph.

Graph<V,E> 
StrongConnectivityAlgorithm.getGraph()
Return the underlying graph.

Graph<V,E> 
MatchingAlgorithm.Matching.getGraph()
Returns the graph over which this matching is defined.

Graph<V,E> 
MatchingAlgorithm.MatchingImpl.getGraph() 
Graph<V,E> 
ShortestPathAlgorithm.SingleSourcePaths.getGraph()
Returns the graph over which this set of paths is defined.

Graph<V,E> 
MultiObjectiveShortestPathAlgorithm.MultiObjectiveSingleSourcePaths.getGraph()
Returns the graph over which this set of paths is defined.

Modifier and Type  Method and Description 

Graph<Graph<V,E>,DefaultEdge> 
StrongConnectivityAlgorithm.getCondensation()
Compute the condensation of the given graph.

List<Graph<V,E>> 
StrongConnectivityAlgorithm.getStronglyConnectedComponents()
Computes a list of subgraphs of the given graph.

Modifier and Type  Method and Description 

GraphPath<V,E> 
EulerianCycleAlgorithm.getEulerianCycle(Graph<V,E> graph)
Compute an Eulerian cycle of a graph.

GraphPath<V,E> 
HamiltonianCycleAlgorithm.getTour(Graph<V,E> graph)
Computes a tour.

GraphPath<V,E> 
TSPAlgorithm.getTour(Graph<V,E> graph)
Deprecated.
Computes a tour.

default MinimumVertexCoverAlgorithm.VertexCover<V> 
MinimumWeightedVertexCoverAlgorithm.getVertexCover(Graph<V,E> graph)
Deprecated.
Computes a vertex cover; all vertices are considered to have equal weight.

MinimumVertexCoverAlgorithm.VertexCover<V> 
MinimumVertexCoverAlgorithm.getVertexCover(Graph<V,E> graph)
Deprecated.
Computes a vertex cover; all vertices are considered to have equal weight.

MinimumVertexCoverAlgorithm.VertexCover<V> 
MinimumWeightedVertexCoverAlgorithm.getVertexCover(Graph<V,E> graph,
Map<V,Double> vertexWeightMap)
Deprecated.
Computes a vertex cover; the weight of each vertex is provided in the in the
vertexWeightMap . 
Constructor and Description 

CycleBasisImpl(Graph<V,E> graph)
Construct a new instance.

CycleBasisImpl(Graph<V,E> graph,
Set<List<E>> cycles,
int length,
double weight)
Construct a new instance.

MatchingImpl(Graph<V,E> graph,
Set<E> edges,
double weight)
Construct a new instance

Modifier and Type  Field and Description 

protected Graph<V,E> 
VF2AbstractIsomorphismInspector.graph1 
protected Graph<V,E> 
VF2AbstractIsomorphismInspector.graph2 
Constructor and Description 

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2AbstractIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new base implementation of the VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new VF2 isomorphism inspector.

VF2GraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new VF2 isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
boolean cacheEdges)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new VF2 subgraph isomorphism inspector.

VF2SubgraphIsomorphismInspector(Graph<V,E> graph1,
Graph<V,E> graph2,
Comparator<V> vertexComparator,
Comparator<E> edgeComparator,
boolean cacheEdges)
Construct a new VF2 subgraph isomorphism inspector.

Constructor and Description 

EdmondsMaximumCardinalityMatching(Graph<V,E> graph)
Constructs a new instance of the algorithm.

EdmondsMaximumCardinalityMatching(Graph<V,E> graph,
MatchingAlgorithm<V,E> initializer)
Constructs a new instance of the algorithm.

GreedyMaximumCardinalityMatching(Graph<V,E> graph,
boolean sort)
Creates a new GreedyMaximumCardinalityMatching instance.

GreedyWeightedMatching(Graph<V,E> graph,
boolean normalizeEdgeCosts)
Create and execute a new instance of the greedy maximum weight matching algorithm.

GreedyWeightedMatching(Graph<V,E> graph,
boolean normalizeEdgeCosts,
double epsilon)
Create and execute a new instance of the greedy maximum weight matching algorithm.

HopcroftKarpMaximumCardinalityBipartiteMatching(Graph<V,E> graph,
Set<V> partition1,
Set<V> partition2)
Constructs a new instance of the Hopcroft Karp bipartite matching algorithm.

KuhnMunkresMinimalWeightBipartitePerfectMatching(Graph<V,E> graph,
Set<? extends V> partition1,
Set<? extends V> partition2)
Construct a new instance of the algorithm.

MaximumWeightBipartiteMatching(Graph<V,E> graph,
Set<V> partition1,
Set<V> partition2)
Constructor.

PathGrowingWeightedMatching(Graph<V,E> graph)
Construct a new instance of the path growing algorithm.

PathGrowingWeightedMatching(Graph<V,E> graph,
boolean useHeuristics)
Construct a new instance of the path growing algorithm.

PathGrowingWeightedMatching(Graph<V,E> graph,
boolean useHeuristics,
double epsilon)
Construct a new instance of the path growing algorithm.

Modifier and Type  Field and Description 

protected Graph<V,E> 
ClosenessCentrality.graph
Underlying graph

Constructor and Description 

AlphaCentrality(Graph<V,E> g)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
double exogenousFactor)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
double exogenousFactor,
int maxIterations)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
double exogenousFactor,
int maxIterations,
double tolerance)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
ToDoubleFunction<V> exogenousFactorFunction)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
ToDoubleFunction<V> exogenousFactorFunction,
int maxIterations)
Create and execute an instance of AlphaCentrality.

AlphaCentrality(Graph<V,E> g,
double dampingFactor,
ToDoubleFunction<V> exogenousFactorFunction,
int maxIterations,
double tolerance)
Create and execute an instance of AlphaCentrality.

BetweennessCentrality(Graph<V,E> graph)
Construct a new instance.

BetweennessCentrality(Graph<V,E> graph,
boolean normalize)
Construct a new instance.

ClosenessCentrality(Graph<V,E> graph)
Construct a new instance.

ClosenessCentrality(Graph<V,E> graph,
boolean incoming,
boolean normalize)
Construct a new instance.

Coreness(Graph<V,E> g)
Constructor

HarmonicCentrality(Graph<V,E> graph)
Construct a new instance.

HarmonicCentrality(Graph<V,E> graph,
boolean incoming,
boolean normalize)
Construct a new instance.

PageRank(Graph<V,E> g)
Create and execute an instance of PageRank.

PageRank(Graph<V,E> g,
double dampingFactor)
Create and execute an instance of PageRank.

PageRank(Graph<V,E> g,
double dampingFactor,
int maxIterations)
Create and execute an instance of PageRank.

PageRank(Graph<V,E> g,
double dampingFactor,
int maxIterations,
double tolerance)
Create and execute an instance of PageRank.

Modifier and Type  Field and Description 

protected Graph<V,E> 
TreeSingleSourcePathsImpl.g
The graph

protected Graph<V,E> 
ListSingleSourcePathsImpl.graph
The graph

protected Graph<V,E> 
ListMultiObjectiveSingleSourcePathsImpl.graph
The graph

Modifier and Type  Method and Description 

Graph<V,E> 
ListSingleSourcePathsImpl.getGraph()
Returns the graph over which this set of paths is defined.

Graph<V,E> 
TreeSingleSourcePathsImpl.getGraph()
Returns the graph over which this set of paths is defined.

Graph<V,E> 
ListMultiObjectiveSingleSourcePathsImpl.getGraph() 
Modifier and Type  Method and Description 

static <V,E> GraphPath<V,E> 
BidirectionalDijkstraShortestPath.findPathBetween(Graph<V,E> graph,
V source,
V sink)
Find a path between two vertices.

static <V,E> GraphPath<V,E> 
BellmanFordShortestPath.findPathBetween(Graph<V,E> graph,
V source,
V sink)
Find a path between two vertices.

static <V,E> GraphPath<V,E> 
DijkstraShortestPath.findPathBetween(Graph<V,E> graph,
V source,
V sink)
Find a path between two vertices.

Constructor and Description 

AllDirectedPaths(Graph<V,E> graph)
Create a new instance

ALTAdmissibleHeuristic(Graph<V,E> graph,
Set<V> landmarks)
Constructs a new
AStarAdmissibleHeuristic using a set of landmarks. 
AStarShortestPath(Graph<V,E> graph,
AStarAdmissibleHeuristic<V> admissibleHeuristic)
Create a new instance of the A* shortest path algorithm.

BellmanFordShortestPath(Graph<V,E> graph)
Construct a new instance.

BellmanFordShortestPath(Graph<V,E> graph,
double epsilon)
Construct a new instance.

BhandariKDisjointShortestPaths(Graph<V,E> graph)
Creates an object to calculate $k$ disjoint shortest paths between the start vertex and
others vertices.

BidirectionalDijkstraShortestPath(Graph<V,E> graph)
Constructs a new instance for a specified graph.

BidirectionalDijkstraShortestPath(Graph<V,E> graph,
double radius)
Constructs a new instance for a specified graph.

DijkstraShortestPath(Graph<V,E> graph)
Constructs a new instance of the algorithm for a given graph.

DijkstraShortestPath(Graph<V,E> graph,
double radius)
Constructs a new instance of the algorithm for a given graph.

FloydWarshallShortestPaths(Graph<V,E> graph)
Create a new instance of the FloydWarshall allpairs shortest path algorithm.

GraphMeasurer(Graph<V,E> graph)
Constructs a new instance of GraphMeasurer.

GraphMeasurer(Graph<V,E> graph,
ShortestPathAlgorithm<V,E> shortestPathAlgorithm)
Constructs a new instance of GraphMeasurer.

JohnsonShortestPaths(Graph<V,E> graph)
Construct a new instance.

JohnsonShortestPaths(Graph<V,E> graph,
Class<? extends V> vertexClass)
Deprecated.
Use suppliers instead

JohnsonShortestPaths(Graph<V,E> graph,
double epsilon)
Construct a new instance.

JohnsonShortestPaths(Graph<V,E> graph,
VertexFactory<V> vertexFactory)
Deprecated.
Use suppliers instead

JohnsonShortestPaths(Graph<V,E> graph,
VertexFactory<V> vertexFactory,
double epsilon)
Deprecated.
Use suppliers instead

KShortestPaths(Graph<V,E> graph,
int k)
Deprecated.
Constructs an object to compute ranking shortest paths in a graph.

KShortestPaths(Graph<V,E> graph,
int k,
int nMaxHops)
Deprecated.
Constructs an object to calculate ranking shortest paths in a graph.

KShortestPaths(Graph<V,E> graph,
int k,
int nMaxHops,
PathValidator<V,E> pathValidator)
Deprecated.
Constructs an object to calculate ranking shortest paths in a graph.

KShortestPaths(Graph<V,E> graph,
int k,
PathValidator<V,E> pathValidator)
Deprecated.
Constructs an object to compute ranking shortest paths in a graph.

KShortestSimplePaths(Graph<V,E> graph)
Constructs an object to compute ranking shortest paths in a graph.

KShortestSimplePaths(Graph<V,E> graph,
int nMaxHops)
Constructs an object to calculate ranking shortest paths in a graph.

KShortestSimplePaths(Graph<V,E> graph,
int nMaxHops,
PathValidator<V,E> pathValidator)
Constructs an object to calculate ranking shortest paths in a graph.

KShortestSimplePaths(Graph<V,E> graph,
PathValidator<V,E> pathValidator)
Constructs an object to compute ranking shortest paths in a graph.

ListMultiObjectiveSingleSourcePathsImpl(Graph<V,E> graph,
V source,
Map<V,List<GraphPath<V,E>>> paths)
Construct a new instance.

ListSingleSourcePathsImpl(Graph<V,E> graph,
V source,
Map<V,GraphPath<V,E>> paths)
Construct a new instance.

MartinShortestPath(Graph<V,E> graph,
Function<E,double[]> edgeWeightFunction)
Create a new shortest path algorithm

TreeSingleSourcePathsImpl(Graph<V,E> g,
V source,
Map<V,Pair<Double,E>> distanceAndPredecessorMap)
Construct a new instance.

Constructor and Description 

BoruvkaMinimumSpanningTree(Graph<V,E> graph)
Construct a new instance of the algorithm.

GreedyMultiplicativeSpanner(Graph<V,E> graph,
int k)
Constructs instance to compute a $(2k1)$spanner of an undirected graph.

KruskalMinimumSpanningTree(Graph<V,E> graph)
Construct a new instance of the algorithm.

PrimMinimumSpanningTree(Graph<V,E> graph)
Construct a new instance of the algorithm.

Modifier and Type  Method and Description 

GraphPath<V,E> 
HeldKarpTSP.getTour(Graph<V,E> graph)
Computes a minimumcost Hamiltonian tour.

GraphPath<V,E> 
PalmerHamiltonianCycle.getTour(Graph<V,E> graph)
Computes a Hamiltonian tour.

GraphPath<V,E> 
TwoOptHeuristicTSP.getTour(Graph<V,E> graph)
Computes a 2approximate tour.

GraphPath<V,E> 
TwoApproxMetricTSP.getTour(Graph<V,E> graph)
Computes a 2approximate tour.

Constructor and Description 

NeighborCache(Graph<V,E> graph)
Constructor

VertexDegreeComparator(Graph<V,E> g)
Creates a comparator for comparing the degrees of vertices in the specified graph.

VertexDegreeComparator(Graph<V,E> g,
VertexDegreeComparator.Order order)
Creates a comparator for comparing the degrees of vertices in the specified graph.

Constructor and Description 

BarYehudaEvenTwoApproxVCImpl(Graph<V,E> graph)
Constructs a new BarYehudaEvenTwoApproxVCImpl instance where all vertices have uniform
weights.

BarYehudaEvenTwoApproxVCImpl(Graph<V,E> graph,
Map<V,Double> vertexWeightMap)
Constructs a new BarYehudaEvenTwoApproxVCImpl instance

ClarksonTwoApproxVCImpl(Graph<V,E> graph)
Constructs a new ClarksonTwoApproxVCImpl instance where all vertices have uniform weights.

ClarksonTwoApproxVCImpl(Graph<V,E> graph,
Map<V,Double> vertexWeightMap)
Constructs a new ClarksonTwoApproxVCImpl instance

EdgeBasedTwoApproxVCImpl(Graph<V,E> graph)
Constructs a new EdgeBasedTwoApproxVCImpl instance

GreedyVCImpl(Graph<V,E> graph)
Constructs a new GreedyVCImpl instance where all vertices have uniform weights.

GreedyVCImpl(Graph<V,E> graph,
Map<V,Double> vertexWeightMap)
Constructs a new GreedyVCImpl instance

RecursiveExactVCImpl(Graph<V,E> graph)
Constructs a new GreedyVCImpl instance

RecursiveExactVCImpl(Graph<V,E> graph,
Map<V,Double> vertexWeightMap)
Constructs a new GreedyVCImpl instance

Constructor and Description 

BrownBacktrackColoring(Graph<V,E> g)
Construct a new Brown backtracking algorithm.

Constructor and Description 

JGraphXAdapter(Graph<V,E> graph)
Constructs and draws a new mxGraph from a JGraphT graph.

Modifier and Type  Method and Description 

void 
NamedGraphGenerator.generateBidiakisCubeGraph(Graph<V,E> targetGraph)
Generates a Bidiakis cube Graph.

void 
NamedGraphGenerator.generateBlanusaFirstSnarkGraph(Graph<V,E> targetGraph)
Generates the First Blanusa Snark
Graph.

void 
NamedGraphGenerator.generateBlanusaSecondSnarkGraph(Graph<V,E> targetGraph)
Generates the Second Blanusa Snark
Graph.

void 
NamedGraphGenerator.generateBrinkmannGraph(Graph<V,E> targetGraph)
Generates the Brinkmann Graph.

void 
NamedGraphGenerator.generateBuckyBallGraph(Graph<V,E> targetGraph)
Generates a Bucky ball Graph.

void 
NamedGraphGenerator.generateBullGraph(Graph<V,E> targetGraph)
Generates a Bull Graph.

void 
NamedGraphGenerator.generateButterflyGraph(Graph<V,E> targetGraph)
Generates a Butterfly Graph.

void 
NamedGraphGenerator.generateChvatalGraph(Graph<V,E> targetGraph)
Generates the Chvatal Graph.

void 
NamedGraphGenerator.generateClawGraph(Graph<V,E> targetGraph)
Generates a Claw Graph.

void 
NamedGraphGenerator.generateClebschGraph(Graph<V,E> targetGraph)
Generates a Clebsch Graph.

void 
NamedGraphGenerator.generateCoxeterGraph(Graph<V,E> targetGraph)
Generates the Coxeter Graph.

void 
NamedGraphGenerator.generateDesarguesGraph(Graph<V,E> targetGraph)
Generates a Desargues Graph.

void 
NamedGraphGenerator.generateDiamondGraph(Graph<V,E> targetGraph)
Generates the Diamond Graph.

void 
NamedGraphGenerator.generateDodecahedronGraph(Graph<V,E> targetGraph)
Generates a Dodecahedron
Graph.

void 
NamedGraphGenerator.generateDoubleStarSnarkGraph(Graph<V,E> targetGraph)
Generates the Double Star Snark
Graph.

void 
NamedGraphGenerator.generateDoyleGraph(Graph<V,E> targetGraph)
Generates a Doyle Graph.

void 
NamedGraphGenerator.generateDÃ¼rerGraph(Graph<V,E> targetGraph)
Generates a DÃ¼rer Graph.

void 
NamedGraphGenerator.generateEllinghamHorton54Graph(Graph<V,E> targetGraph)
Generates the
EllinghamHorton 54
Graph.

void 
NamedGraphGenerator.generateEllinghamHorton78Graph(Graph<V,E> targetGraph)
Generates the
EllinghamHorton 78
Graph.

void 
NamedGraphGenerator.generateErreraGraph(Graph<V,E> targetGraph)
Generates the Errera Graph.

void 
NamedGraphGenerator.generateFolkmanGraph(Graph<V,E> targetGraph)
Generates the Folkman Graph.

void 
NamedGraphGenerator.generateFranklinGraph(Graph<V,E> targetGraph)
Generates the Franklin Graph.

void 
NamedGraphGenerator.generateFruchtGraph(Graph<V,E> targetGraph)
Generates the Frucht Graph.

void 
NamedGraphGenerator.generateGoldnerHararyGraph(Graph<V,E> targetGraph)
Generates the GoldnerHarary
Graph.

void 
NamedGraphGenerator.generateGossetGraph(Graph<V,E> targetGraph)
Generates the Gosset Graph.

default void 
GraphGenerator.generateGraph(Graph<V,E> target)
Generate a graph structure.

void 
GeneralizedPetersenGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,List<V>> resultMap)
Generates the Generalized Petersen Graph

void 
GraphGenerator.generateGraph(Graph<V,E> target,
Map<String,T> resultMap)
Generate a graph structure.

void 
WheelGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
WattsStrogatzGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a smallworld graph based on the WattsStrogatz model.

void 
GnmRandomGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a random graph based on the $G(n, M)$ model

void 
GnpRandomBipartiteGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a random bipartite graph.

void 
StarGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a star graph with the designated order from the constructor

void 
CompleteBipartiteGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Construct a complete bipartite graph

void 
RingGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
SimpleWeightedGraphMatrixGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap) 
void 
GnmRandomBipartiteGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a random bipartite graph.

void 
RandomRegularGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a random regular graph.

void 
ScaleFreeGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates scalefree network with size passed to the constructor.

void 
HyperCubeGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap) 
void 
ComplementGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap) 
void 
LinearGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
BarabasiAlbertGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates an instance.

void 
KleinbergSmallWorldGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a smallworld graph.

void 
PlantedPartitionGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate an $l$planted partition graph.

void 
SimpleWeightedBipartiteGraphMatrixGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
GridGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
WindmillGraphsGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap) 
void 
EmptyGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

void 
LinearizedChordDiagramGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates an instance.

void 
GnpRandomGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generates a random graph based on the $G(n, p)$ model.

void 
CompleteGraphGenerator.generateGraph(Graph<V,E> target,
Map<String,V> resultMap)
Generate a graph structure.

default void 
GraphGenerator.generateGraph(Graph<V,E> target,
VertexFactory<V> vertexFactory)
Deprecated.
Use simpler methods

default void 
GraphGenerator.generateGraph(Graph<V,E> target,
VertexFactory<V> vertexFactory,
Map<String,T> resultMap)
Deprecated.
Use simpler methods

void 
NamedGraphGenerator.generateGrÃ¶tzschGraph(Graph<V,E> targetGraph)
Generates a GrÃ¶tzsch Graph.

void 
NamedGraphGenerator.generateHeawoodGraph(Graph<V,E> targetGraph)
Generates the Heawood Graph.

void 
NamedGraphGenerator.generateHerschelGraph(Graph<V,E> targetGraph)
Generates the Herschel Graph.

void 
NamedGraphGenerator.generateHoffmanGraph(Graph<V,E> targetGraph)
Generates the Hoffman Graph.

void 
NamedGraphGenerator.generateKittellGraph(Graph<V,E> targetGraph)
Generates the Kittell Graph.

void 
NamedGraphGenerator.generateKlein3RegularGraph(Graph<V,E> targetGraph)
Generates the Klein 3regular Graph.

void 
NamedGraphGenerator.generateKlein7RegularGraph(Graph<V,E> targetGraph)
Generates the Klein 7regular Graph.

void 
NamedGraphGenerator.generateKrackhardtKiteGraph(Graph<V,E> targetGraph)
Generates the Krackhardt kite
Graph.

void 
NamedGraphGenerator.generateMÃ¶biusKantorGraph(Graph<V,E> targetGraph)
Generates a MÃ¶biusKantor
Graph.

void 
NamedGraphGenerator.generateMoserSpindleGraph(Graph<V,E> targetGraph)
Generates the Moser spindle
Graph.

void 
NamedGraphGenerator.generateNauruGraph(Graph<V,E> targetGraph)
Generates a Nauru Graph.

void 
NamedGraphGenerator.generatePappusGraph(Graph<V,E> targetGraph)
Generates the Pappus Graph.

void 
NamedGraphGenerator.generatePetersenGraph(Graph<V,E> targetGraph)
Generates a Petersen Graph.

void 
NamedGraphGenerator.generatePoussinGraph(Graph<V,E> targetGraph)
Generates the Poussin Graph.

void 
NamedGraphGenerator.generateSchlÃ¤fliGraph(Graph<V,E> targetGraph)
Generates the SchlÃ¤fli Graph.

void 
NamedGraphGenerator.generateThomsenGraph(Graph<V,E> targetGraph)
Generates the Thomsen Graph.

void 
NamedGraphGenerator.generateTietzeGraph(Graph<V,E> targetGraph)
Generates the Tietze Graph.

void 
NamedGraphGenerator.generateTutteGraph(Graph<V,E> targetGraph)
Generates the Tutte Graph.

Constructor and Description 

ComplementGraphGenerator(Graph<V,E> graph)
Complement Graph Generator

ComplementGraphGenerator(Graph<V,E> graph,
boolean generateSelfLoops)
Complement Graph Generator.

Modifier and Type  Class and Description 

class 
AbstractBaseGraph<V,E>
The most general implementation of the
Graph interface. 
class 
AbstractGraph<V,E>
A skeletal implementation of the Graph interface, to minimize the effort required to
implement graph interfaces.

class 
AsGraphUnion<V,E>
Readonly union of two graphs.

class 
AsSubgraph<V,E>
A subgraph is a graph that has a subset of vertices and a subset of edges with respect to some
base graph.

class 
AsUndirectedGraph<V,E>
An undirected view of the backing directed graph specified in the constructor.

class 
AsUnmodifiableGraph<V,E>
An unmodifiable view of the backing graph specified in the constructor.

class 
AsUnweightedGraph<V,E>
An unweighted view of a graph.

class 
AsWeightedGraph<V,E>
A weighted view of a graph.

class 
DefaultDirectedGraph<V,E>
The default implementation of a directed graph.

class 
DefaultDirectedWeightedGraph<V,E>
The default implementation of a directed weighted graph.

class 
DefaultListenableGraph<V,E>
A graph backed by the the graph specified at the constructor, which can be listened by
GraphListener s and by
VertexSetListener s. 
class 
DefaultUndirectedGraph<V,E>
The default implementation of an undirected graph.

class 
DefaultUndirectedWeightedGraph<V,E>
The default implementation of an undirected weighted graph.

class 
DirectedAcyclicGraph<V,E>
A directed acyclic graph (DAG).

class 
DirectedMultigraph<V,E>
A directed multigraph.

class 
DirectedPseudograph<V,E>
A directed pseudograph.

class 
DirectedWeightedMultigraph<V,E>
A directed weighted multigraph.

class 
DirectedWeightedPseudograph<V,E>
A directed weighted pseudograph.

class 
EdgeReversedGraph<V,E>
Provides an edgereversed view $g'$ of a directed graph $g$.

class 
GraphDelegator<V,E>
A graph backed by the the graph specified at the constructor, which delegates all its methods to
the backing graph.

class 
MaskSubgraph<V,E>
An unmodifiable subgraph induced by a vertex/edge masking function.

class 
Multigraph<V,E>
A multigraph.

class 
ParanoidGraph<V,E>
ParanoidGraph provides a way to verify that objects added to a graph obey the standard
equals/hashCode contract.

class 
Pseudograph<V,E>
A pseudograph.

class 
SimpleDirectedGraph<V,E>
A simple directed graph.

class 
SimpleDirectedWeightedGraph<V,E>
A simple directed weighted graph.

class 
SimpleGraph<V,E>
A simple graph.

class 
SimpleWeightedGraph<V,E>
A simple weighted graph.

class 
WeightedMultigraph<V,E>
A weighted multigraph.

class 
WeightedPseudograph<V,E>
A weighted pseudograph.

Modifier and Type  Field and Description 

protected Graph<V,E> 
AsSubgraph.base 
protected Graph<V,E> 
MaskSubgraph.base 
protected Graph<V,E> 
GraphWalk.graph 
Modifier and Type  Method and Description 

protected Graph<V,E> 
GraphDelegator.getDelegate()
Return the backing graph (the delegate).

Graph<V,E> 
GraphWalk.getGraph() 
Modifier and Type  Method and Description 

static <V,E> GraphWalk<V,E> 
GraphWalk.emptyWalk(Graph<V,E> graph)
Convenience method which creates an empty walk.

static <V,E> GraphWalk<V,E> 
GraphWalk.singletonWalk(Graph<V,E> graph,
V v)
Convenience method which creates a walk consisting of a single vertex with weight 0.0.

static <V,E> GraphWalk<V,E> 
GraphWalk.singletonWalk(Graph<V,E> graph,
V v,
double weight)
Convenience method which creates a walk consisting of a single vertex.

Constructor and Description 

AsGraphUnion(Graph<V,E> g1,
Graph<V,E> g2)
Construct a new graph union.

AsGraphUnion(Graph<V,E> g1,
Graph<V,E> g2)
Construct a new graph union.

AsGraphUnion(Graph<V,E> g1,
Graph<V,E> g2,
WeightCombiner operator)
Construct a new graph union.

AsGraphUnion(Graph<V,E> g1,
Graph<V,E> g2,
WeightCombiner operator)
Construct a new graph union.

AsSubgraph(Graph<V,E> base)
Creates a new induced Subgraph with all vertices included.

AsSubgraph(Graph<V,E> base,
Set<? extends V> vertexSubset)
Creates a new induced subgraph.

AsSubgraph(Graph<V,E> base,
Set<? extends V> vertexSubset,
Set<? extends E> edgeSubset)
Creates a new subgraph.

AsUndirectedGraph(Graph<V,E> g)
Constructor for AsUndirectedGraph.

AsUnmodifiableGraph(Graph<V,E> g)
Creates a new unmodifiable graph based on the specified backing graph.

AsUnweightedGraph(Graph<V,E> g)
Constructor

AsWeightedGraph(Graph<V,E> g,
Map<E,Double> weightMap)
Constructor for AsWeightedGraph.

DefaultGraphMapping(Map<V,V> g1ToG2,
Map<V,V> g2ToG1,
Graph<V,E> g1,
Graph<V,E> g2)
The maps themselves are used.

DefaultGraphMapping(Map<V,V> g1ToG2,
Map<V,V> g2ToG1,
Graph<V,E> g1,
Graph<V,E> g2)
The maps themselves are used.

DefaultListenableGraph(Graph<V,E> g)
Creates a new listenable graph.

DefaultListenableGraph(Graph<V,E> g,
boolean reuseEvents)
Creates a new listenable graph.

EdgeReversedGraph(Graph<V,E> g)
Creates a new EdgeReversedGraph.

GraphDelegator(Graph<V,E> graph)
Constructor

GraphDelegator(Graph<V,E> graph,
Supplier<V> vertexSupplier,
Supplier<E> edgeSupplier) 
GraphWalk(Graph<V,E> graph,
List<V> vertexList,
double weight)
Creates a walk defined by a sequence of vertices.

GraphWalk(Graph<V,E> graph,
V startVertex,
V endVertex,
List<E> edgeList,
double weight)
Creates a walk defined by a sequence of edges.

GraphWalk(Graph<V,E> graph,
V startVertex,
V endVertex,
List<V> vertexList,
List<E> edgeList,
double weight)
Creates a walk defined by both a sequence of edges and a sequence of vertices.

MaskSubgraph(Graph<V,E> base,
Predicate<V> vertexMask,
Predicate<E> edgeMask)
Creates a new induced subgraph.

ParanoidGraph(Graph<V,E> g)
Create a new paranoid graph.

Modifier and Type  Class and Description 

class 
AbstractGraphBuilder<V,E,G extends Graph<V,E>,B extends AbstractGraphBuilder<V,E,G,B>>
Base class for builders of
Graph 
class 
GraphBuilder<V,E,G extends Graph<V,E>>
A builder class for
Graph . 
Modifier and Type  Field and Description 

protected G 
AbstractGraphBuilder.graph 
Modifier and Type  Method and Description 

Graph<V,E> 
AbstractGraphBuilder.buildAsUnmodifiable()
Build an unmodifiable version graph.

Graph<V,E> 
GraphTypeBuilder.buildGraph()
Build the actual graph.

Modifier and Type  Method and Description 

GraphBuilder<V,E,Graph<V,E>> 
GraphTypeBuilder.buildGraphBuilder()
Build the graph and acquire a
GraphBuilder in order to add vertices and edges. 
Modifier and Type  Method and Description 

B 
AbstractGraphBuilder.addGraph(Graph<? extends V,? extends E> sourceGraph)
Adds all the vertices and all the edges of the
sourceGraph to the graph being built. 
static <V,E> GraphTypeBuilder<V,E> 
GraphTypeBuilder.forGraph(Graph<V,E> graph)
Create a graph type builder which will create the same graph type as the parameter graph.

Modifier and Type  Class and Description 

class 
AsSynchronizedGraph<V,E>
Create a synchronized (threadsafe) Graph backed by the specified Graph.

Modifier and Type  Method and Description 

AsSynchronizedGraph<V,E> 
AsSynchronizedGraph.Builder.build(Graph<V,E> graph)
Build the AsSynchronizedGraph.

Constructor and Description 

AsSynchronizedGraph(Graph<V,E> g)
Constructor for AsSynchronizedGraph with default settings (cache disabled, nonfair mode, and
copyless mode disabled).

Modifier and Type  Class and Description 

class 
BaseGraphAdapter<V,G extends com.google.common.graph.Graph<V>>
A base abstract implementation for the graph adapter class using Guava's
Graph . 
class 
BaseNetworkAdapter<V,E,N extends com.google.common.graph.Network<V,E>>
A base abstract implementation for the graph adapter class using Guava's
Network . 
class 
BaseValueGraphAdapter<V,W,VG extends com.google.common.graph.ValueGraph<V,W>>
A base abstract implementation for the graph adapter class using Guava's
ValueGraph . 
class 
ImmutableDoubleValueGraphAdapter<V>
A graph adapter class using Guava's
ImmutableValueGraph specialized with double values. 
class 
ImmutableGraphAdapter<V>
A graph adapter class using Guava's
ImmutableGraph . 
class 
ImmutableNetworkAdapter<V,E>
A graph adapter class using Guava's
ImmutableNetwork . 
class 
ImmutableValueGraphAdapter<V,W>
A graph adapter class using Guava's
ImmutableValueGraph . 
class 
MutableDoubleValueGraphAdapter<V>
A graph adapter class using Guava's
MutableValueGraph specialized with double values. 
class 
MutableGraphAdapter<V>
A graph adapter class using Guava's
MutableGraph . 
class 
MutableNetworkAdapter<V,E>
A graph adapter class using Guava's
MutableNetwork . 
class 
MutableValueGraphAdapter<V,W>
A graph adapter class using Guava's
MutableValueGraph . 
Modifier and Type  Method and Description 

default void 
GraphExporter.exportGraph(Graph<V,E> g,
File file)
Export a graph

default void 
GraphExporter.exportGraph(Graph<V,E> g,
OutputStream out)
Export a graph

void 
CSVExporter.exportGraph(Graph<V,E> g,
Writer writer)
Exports a graph

void 
GraphExporter.exportGraph(Graph<V,E> g,
Writer writer)
Export a graph

void 
MatrixExporter.exportGraph(Graph<V,E> g,
Writer writer) 
void 
GmlExporter.exportGraph(Graph<V,E> g,
Writer writer)
Exports an graph into a plain text GML format.

void 
GraphMLExporter.exportGraph(Graph<V,E> g,
Writer writer)
Exports a graph in GraphML format.

void 
DOTExporter.exportGraph(Graph<V,E> g,
Writer writer)
Exports a graph into a plain text file in DOT format.

void 
VisioExporter.exportGraph(Graph<V,E> g,
Writer writer)
Exports the specified graph into a Visio CSV file format.

void 
Graph6Sparse6Exporter.exportGraph(Graph<V,E> g,
Writer writer) 
void 
DIMACSExporter.exportGraph(Graph<V,E> g,
Writer writer)
Export a graph

default void 
GraphImporter.importGraph(Graph<V,E> g,
File file)
Import a graph

default void 
GraphImporter.importGraph(Graph<V,E> g,
InputStream in)
Import a graph

void 
DOTImporter.importGraph(Graph<V,E> g,
Reader in)
Import a graph

void 
DIMACSImporter.importGraph(Graph<V,E> graph,
Reader input)
Import a graph.

void 
GraphImporter.importGraph(Graph<V,E> g,
Reader in)
Import a graph

void 
CSVImporter.importGraph(Graph<V,E> graph,
Reader input)
Import a graph.

void 
GraphMLImporter.importGraph(Graph<V,E> graph,
Reader input)
Import a graph.

void 
GmlImporter.importGraph(Graph<V,E> graph,
Reader input)
Import a graph.

void 
Graph6Sparse6Importer.importGraph(Graph<V,E> g,
Reader input) 
void 
Graph6Sparse6Importer.importGraph(Graph<V,E> g,
String g6)
Import the graph represented by a String in graph6 or sparse6 encoding.

Constructor and Description 

DOTExporter(ComponentNameProvider<V> vertexIDProvider,
ComponentNameProvider<V> vertexLabelProvider,
ComponentNameProvider<E> edgeLabelProvider,
ComponentAttributeProvider<V> vertexAttributeProvider,
ComponentAttributeProvider<E> edgeAttributeProvider,
ComponentNameProvider<Graph<V,E>> graphIDProvider)
Constructs a new DOTExporter object with the given ID, label, attribute, and graph id
providers.

DOTImporter(VertexProvider<V> vertexProvider,
EdgeProvider<V,E> edgeProvider,
ComponentUpdater<V> vertexUpdater,
ComponentUpdater<Graph<V,E>> graphUpdater)
Constructs a new importer.

Modifier and Type  Field and Description 

protected Graph<V,E> 
AbstractGraphIterator.graph 
Modifier and Type  Method and Description 

Graph<V,E> 
AbstractGraphIterator.getGraph()
Get the graph being traversed.

Constructor and Description 

AbstractGraphIterator(Graph<V,E> graph)
Create a new iterator

BreadthFirstIterator(Graph<V,E> g)
Creates a new breadthfirst iterator for the specified graph.

BreadthFirstIterator(Graph<V,E> g,
Iterable<V> startVertices)
Creates a new breadthfirst iterator for the specified graph.

BreadthFirstIterator(Graph<V,E> g,
V startVertex)
Creates a new breadthfirst iterator for the specified graph.

ClosestFirstIterator(Graph<V,E> g)
Deprecated.
this constructor never made much sense, since distance is defined with respect to
one or more start vertices

ClosestFirstIterator(Graph<V,E> g,
Iterable<V> startVertices)
Creates a new closestfirst iterator for the specified graph.

ClosestFirstIterator(Graph<V,E> g,
Iterable<V> startVertices,
double radius)
Creates a new radiusbounded closestfirst iterator for the specified graph.

ClosestFirstIterator(Graph<V,E> g,
V startVertex)
Creates a new closestfirst iterator for the specified graph.

ClosestFirstIterator(Graph<V,E> g,
V startVertex,
double radius)
Creates a new radiusbounded closestfirst iterator for the specified graph.

CrossComponentIterator(Graph<V,E> g)
Creates a new iterator for the specified graph.

CrossComponentIterator(Graph<V,E> g,
Iterable<V> startVertices)
Creates a new iterator for the specified graph.

CrossComponentIterator(Graph<V,E> g,
V startVertex)
Creates a new iterator for the specified graph.

DegeneracyOrderingIterator(Graph<V,E> graph)
Constructor

DepthFirstIterator(Graph<V,E> g)
Creates a new depthfirst iterator for the specified graph.

DepthFirstIterator(Graph<V,E> g,
Iterable<V> startVertices)
Creates a new depthfirst iterator for the specified graph.

DepthFirstIterator(Graph<V,E> g,
V startVertex)
Creates a new depthfirst iterator for the specified graph.

LexBreadthFirstIterator(Graph<V,E> graph)
Creates new lexicographical breadthfirst iterator for
graph . 
MaximumCardinalityIterator(Graph<V,E> graph)
Creates a maximum cardinality iterator for the
graph . 
RandomWalkIterator(Graph<V,E> graph)
Creates a new iterator for the specified graph.

RandomWalkIterator(Graph<V,E> graph,
V startVertex)
Creates a new iterator for the specified graph.

RandomWalkIterator(Graph<V,E> graph,
V startVertex,
boolean isWeighted)
Creates a new iterator for the specified graph.

RandomWalkIterator(Graph<V,E> graph,
V startVertex,
boolean isWeighted,
long maxSteps)
Creates a new iterator for the specified graph.

RandomWalkIterator(Graph<V,E> graph,
V startVertex,
boolean isWeighted,
long maxSteps,
Random rng)
Creates a new iterator for the specified graph.

TopologicalOrderIterator(Graph<V,E> graph)
Construct a topological order iterator.

TopologicalOrderIterator(Graph<V,E> graph,
Comparator<V> comparator)
Construct a topological order iterator.

Copyright © 2018. All rights reserved.