V - the graph vertex typeE - the graph edge typepublic class GraphDelegator<V,E> extends AbstractGraph<V,E> implements Graph<V,E>, Serializable
This graph does not pass the hashCode and equals operations through to the backing graph, but relies on Object's equals and hashCode methods.
This class is mostly used as a base for extending subclasses. It can also be used in order to override the vertex and edge supplier of a graph.
DEFAULT_EDGE_WEIGHT| Constructor and Description |
|---|
GraphDelegator(Graph<V,E> graph)
Constructor
|
GraphDelegator(Graph<V,E> graph,
Supplier<V> vertexSupplier,
Supplier<E> edgeSupplier) |
| Modifier and Type | Method and Description |
|---|---|
E |
addEdge(V sourceVertex,
V targetVertex)
Creates a new edge in this graph, going from the source vertex to the target vertex, and
returns the created edge.
|
boolean |
addEdge(V sourceVertex,
V targetVertex,
E e)
Adds the specified edge to this graph, going from the source vertex to the target vertex.
|
V |
addVertex()
Creates a new vertex in this graph and returns it.
|
boolean |
addVertex(V v)
Adds the specified vertex to this graph if not already present.
|
boolean |
containsEdge(E e)
Returns true if this graph contains the specified edge.
|
boolean |
containsVertex(V v)
Returns true if this graph contains the specified vertex.
|
int |
degreeOf(V vertex)
Returns the degree of the specified vertex.
|
Set<E> |
edgeSet()
Returns a set of the edges contained in this graph.
|
Set<E> |
edgesOf(V vertex)
Returns a set of all edges touching the specified vertex.
|
Set<E> |
getAllEdges(V sourceVertex,
V targetVertex)
Returns a set of all edges connecting source vertex to target vertex if such vertices exist
in this graph.
|
protected Graph<V,E> |
getDelegate()
Return the backing graph (the delegate).
|
E |
getEdge(V sourceVertex,
V targetVertex)
Returns an edge connecting source vertex to target vertex if such vertices and such edge
exist in this graph.
|
EdgeFactory<V,E> |
getEdgeFactory()
Deprecated.
Use suppliers instead
|
V |
getEdgeSource(E e)
Returns the source vertex of an edge.
|
Supplier<E> |
getEdgeSupplier()
Return the edge supplier that the graph uses whenever it needs to create new edges.
|
V |
getEdgeTarget(E e)
Returns the target vertex of an edge.
|
double |
getEdgeWeight(E e)
Returns the weight assigned to a given edge.
|
GraphType |
getType()
Get the graph type.
|
Supplier<V> |
getVertexSupplier()
Return the vertex supplier that the graph uses whenever it needs to create new vertices.
|
Set<E> |
incomingEdgesOf(V vertex)
Returns a set of all edges incoming into the specified vertex.
|
int |
inDegreeOf(V vertex)
Returns the "in degree" of the specified vertex.
|
int |
outDegreeOf(V vertex)
Returns the "out degree" of the specified vertex.
|
Set<E> |
outgoingEdgesOf(V vertex)
Returns a set of all edges outgoing from the specified vertex.
|
boolean |
removeEdge(E e)
Removes the specified edge from the graph.
|
E |
removeEdge(V sourceVertex,
V targetVertex)
Removes an edge going from source vertex to target vertex, if such vertices and such edge
exist in this graph.
|
boolean |
removeVertex(V v)
Removes the specified vertex from this graph including all its touching edges if present.
|
void |
setEdgeWeight(E e,
double weight)
Assigns a weight to an edge.
|
String |
toString()
Returns a string of the parenthesized pair (V, E) representing this G=(V,E) graph.
|
Set<V> |
vertexSet()
Returns a set of the vertices contained in this graph.
|
assertVertexExist, containsEdge, equals, hashCode, removeAllEdges, removeAllEdges, removeAllEdges, removeAllVertices, toStringFromSetsclone, finalize, getClass, notify, notifyAll, wait, wait, waitcontainsEdge, removeAllEdges, removeAllEdges, removeAllVerticespublic GraphDelegator(Graph<V,E> graph)
graph - the backing graph (the delegate).public GraphDelegator(Graph<V,E> graph, Supplier<V> vertexSupplier, Supplier<E> edgeSupplier)
graph - the backing graph (the delegate).vertexSupplier - vertex supplier for the delegator. Can be null in which case the
backing graph vertex supplier will be used.edgeSupplier - edge supplier for the delegator. Can be null in which case the backing
graph edge supplier will be used.public Supplier<V> getVertexSupplier()
A graph uses the vertex supplier to create new vertex objects whenever a user calls method
Graph.addVertex(). Users can also create the vertex in user code and then use method
Graph.addVertex(Object) to add the vertex.
In contrast with the Supplier interface, the vertex supplier has the additional
requirement that a new and distinct result is returned every time it is invoked. More
specifically for a new vertex to be added in a graph v must not be equal
to any other vertex in the graph. More formally, the graph must not contain any vertex
v2 such that v2.equals(v).
Returns the delegator's vertex supplier or the backing graph's vertex supplier in case of null.
getVertexSupplier in interface Graph<V,E>null if the graph has no such supplierpublic Supplier<E> getEdgeSupplier()
A graph uses the edge supplier to create new edge objects whenever a user calls method
Graph.addEdge(Object, Object). Users can also create the edge in user code and then
use method Graph.addEdge(Object, Object, Object) to add the edge.
In contrast with the Supplier interface, the edge supplier has the additional
requirement that a new and distinct result is returned every time it is invoked. More
specifically for a new edge to be added in a graph e must not be equal to
any other edge in the graph (even if the graph allows edge-multiplicity). More formally, the
graph must not contain any edge e2 such that e2.equals(e).
Returns the delegator's edge supplier or the backing graph's edge supplier in case of null.
getEdgeSupplier in interface Graph<V,E>null if the graph has no such supplierpublic Set<E> getAllEdges(V sourceVertex, V targetVertex)
null, returns
null. If both vertices exist but no edges found, returns an empty set.
In undirected graphs, some of the returned edges may have their source and target vertices in the opposite order. In simple graphs the returned set is either singleton set or empty set.
getAllEdges in interface Graph<V,E>sourceVertex - source vertex of the edge.targetVertex - target vertex of the edge.public E getEdge(V sourceVertex, V targetVertex)
null. If any of the specified vertices is null returns null
In undirected graphs, the returned edge may have its source and target vertices in the opposite order.
@Deprecated public EdgeFactory<V,E> getEdgeFactory()
getEdgeFactory in interface Graph<V,E>public E addEdge(V sourceVertex, V targetVertex)
null.
The source and target vertices must already be contained in this graph. If they are not found
in graph IllegalArgumentException is thrown.
This method creates the new edge e using this graph's edge supplier (see
Graph.getEdgeSupplier()). For the new edge to be added e must not be
equal to any other edge the graph (even if the graph allows edge-multiplicity). More
formally, the graph must not contain any edge e2 such that
e2.equals(e). If such
e2 is found then the newly created edge e is abandoned, the method leaves
this graph unchanged and returns null.
If the underlying graph implementation's Graph.getEdgeSupplier() returns
null, then this method cannot create edges and throws an
UnsupportedOperationException.
addEdge in interface Graph<V,E>sourceVertex - source vertex of the edge.targetVertex - target vertex of the edge.
null.Graph.getEdgeSupplier()public boolean addEdge(V sourceVertex, V targetVertex, E e)
e, to this graph if this graph contains no edge e2 such that
e2.equals(e). If this graph already contains such an edge, the call leaves this
graph unchanged and returns false. Some graphs do not allow edge-multiplicity. In
such cases, if the graph already contains an edge from the specified source to the specified
target, than this method does not change the graph and returns
false. If the edge was added to the graph, returns
true.
The source and target vertices must already be contained in this graph. If they are not found in graph IllegalArgumentException is thrown.
addEdge in interface Graph<V,E>sourceVertex - source vertex of the edge.targetVertex - target vertex of the edge.e - edge to be added to this graph.Graph.addEdge(Object, Object),
Graph.getEdgeSupplier()public V addVertex()
This method creates the new vertex v using this graph's vertex supplier (see
Graph.getVertexSupplier()). For the new vertex to be added v must not
be equal to any other vertex in the graph. More formally, the graph must not contain any
vertex v2 such that v2.equals(v). If such
v2 is found then the newly created vertex v is abandoned, the method
leaves this graph unchanged and returns null.
If the underlying graph implementation's Graph.getVertexSupplier() returns
null, then this method cannot create vertices and throws an
UnsupportedOperationException.
addVertex in interface Graph<V,E>null.Graph.getVertexSupplier()public boolean addVertex(V v)
v, to this graph if this graph contains no vertex
u such that
u.equals(v). If this graph already contains such vertex, the call leaves this graph
unchanged and returns false. In combination with the restriction on constructors,
this ensures that graphs never contain duplicate vertices.public boolean containsEdge(E e)
e2 such that
e.equals(e2). If the specified edge is null returns
false.containsEdge in interface Graph<V,E>e - edge whose presence in this graph is to be tested.public boolean containsVertex(V v)
u such that
u.equals(v). If the specified vertex is null returns
false.containsVertex in interface Graph<V,E>v - vertex whose presence in this graph is to be tested.public int degreeOf(V vertex)
public Set<E> edgeSet()
The graph implementation may maintain a particular set ordering (e.g. via
LinkedHashSet) for deterministic iteration, but this is not required. It is
the responsibility of callers who rely on this behavior to only use graph implementations
which support it.
public Set<E> edgesOf(V vertex)
public int inDegreeOf(V vertex)
The "in degree" of a vertex in a directed graph is the number of inward directed edges from that vertex. See http://mathworld.wolfram.com/Indegree.html.
In the case of undirected graphs this method returns the number of edges touching the vertex. Edges with same source and target vertices (self-loops) are counted twice.
inDegreeOf in interface Graph<V,E>vertex - vertex whose degree is to be calculated.public Set<E> incomingEdgesOf(V vertex)
In the case of undirected graphs this method returns all edges touching the vertex, thus, some of the returned edges may have their source and target vertices in the opposite order.
incomingEdgesOf in interface Graph<V,E>vertex - the vertex for which the list of incoming edges to be returned.public int outDegreeOf(V vertex)
The "out degree" of a vertex in a directed graph is the number of outward directed edges from that vertex. See http://mathworld.wolfram.com/Outdegree.html.
In the case of undirected graphs this method returns the number of edges touching the vertex. Edges with same source and target vertices (self-loops) are counted twice.
outDegreeOf in interface Graph<V,E>vertex - vertex whose degree is to be calculated.public Set<E> outgoingEdgesOf(V vertex)
In the case of undirected graphs this method returns all edges touching the vertex, thus, some of the returned edges may have their source and target vertices in the opposite order.
outgoingEdgesOf in interface Graph<V,E>vertex - the vertex for which the list of outgoing edges to be returned.public boolean removeEdge(E e)
e2 such that e2.equals(e), if the graph contains such edge. Returns
true if the graph contained the specified edge. (The graph will not contain the
specified edge once the call returns).
If the specified edge is null returns
false.
removeEdge in interface Graph<V,E>e - edge to be removed from this graph, if present.true if and only if the graph contained the specified edge.public E removeEdge(V sourceVertex, V targetVertex)
null otherwise.removeEdge in interface Graph<V,E>sourceVertex - source vertex of the edge.targetVertex - target vertex of the edge.null if no edge removed.public boolean removeVertex(V v)
u such that u.equals(v), the call removes all edges that touch
u and then removes u itself. If no such u is found,
the call leaves the graph unchanged. Returns true if the graph contained the
specified vertex. (The graph will not contain the specified vertex once the call returns).
If the specified vertex is null returns
false.
removeVertex in interface Graph<V,E>v - vertex to be removed from this graph, if present.true if the graph contained the specified vertex; false
otherwise.public String toString()
toString in class AbstractGraph<V,E>public Set<V> vertexSet()
The graph implementation may maintain a particular set ordering (e.g. via
LinkedHashSet) for deterministic iteration, but this is not required. It is
the responsibility of callers who rely on this behavior to only use graph implementations
which support it.
public V getEdgeSource(E e)
getEdgeSource in interface Graph<V,E>e - edge of interestpublic V getEdgeTarget(E e)
getEdgeTarget in interface Graph<V,E>e - edge of interestpublic double getEdgeWeight(E e)
Graph.DEFAULT_EDGE_WEIGHT), allowing weighted-graph algorithms to apply to them when
meaningful.getEdgeWeight in interface Graph<V,E>e - edge of interestpublic void setEdgeWeight(E e, double weight)
setEdgeWeight in interface Graph<V,E>e - edge on which to set weightweight - new weight for edgepublic GraphType getType()
Copyright © 2018. All rights reserved.