V
- the graph vertex typeE
- the graph edge typepublic class MaximumWeightBipartiteMatching<V,E> extends Object implements MatchingAlgorithm<V,E>
Running time is $O(n(m+n \log n))$ where n is the number of vertices and m the number of edges of the input graph. Uses exact arithmetic and produces a certificate of optimality in the form of a tight vertex potential function.
This is the algorithm and implementation described in the LEDA book. See the LEDA Platform of Combinatorial and Geometric Computing, Cambridge University Press, 1999.
MatchingAlgorithm.Matching<V,E>, MatchingAlgorithm.MatchingImpl<V,E>
DEFAULT_EPSILON
Constructor and Description |
---|
MaximumWeightBipartiteMatching(Graph<V,E> graph,
Set<V> partition1,
Set<V> partition2)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
MatchingAlgorithm.Matching<V,E> |
getMatching()
Compute a matching for a given graph.
|
BigDecimal |
getMatchingWeight()
Get the weight of the matching.
|
Map<V,BigDecimal> |
getPotentials()
Get the vertex potentials.
|
public MaximumWeightBipartiteMatching(Graph<V,E> graph, Set<V> partition1, Set<V> partition2)
graph
- the input graphpartition1
- the first partition of the vertex setpartition2
- the second partition of the vertex setIllegalArgumentException
- if the graph is not undirectedpublic MatchingAlgorithm.Matching<V,E> getMatching()
getMatching
in interface MatchingAlgorithm<V,E>
public Map<V,BigDecimal> getPotentials()
This is a tight non-negative potential function which proves the optimality of the maximum weight matching. See any standard textbook about linear programming duality.
public BigDecimal getMatchingWeight()
Copyright © 2018. All rights reserved.