- java.lang.Object
-
- org.jgrapht.alg.clique.PivotBronKerboschCliqueFinder<V,E>
-
- Type Parameters:
V
- the graph vertex typeE
- the graph edge type
- All Implemented Interfaces:
Iterable<Set<V>>
,MaximalCliqueEnumerationAlgorithm<V,E>
- Direct Known Subclasses:
DegeneracyBronKerboschCliqueFinder
public class PivotBronKerboschCliqueFinder<V,E> extends Object
Bron-Kerbosch maximal clique enumeration algorithm with pivot.The pivoting follows the rule from the paper
- E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1):28–42, 2006.
where the authors show that using that rule guarantees that the Bron-Kerbosch algorithm has worst-case running time $O(3^{n/3})$ where $n$ is the number of vertices of the graph, excluding time to write the output, which is worst-case optimal.
The algorithm first computes all maximal cliques and then returns the result to the user. A timeout can be set using the constructor parameters.
- Author:
- Dimitrios Michail
- See Also:
BronKerboschCliqueFinder
,DegeneracyBronKerboschCliqueFinder
-
-
Field Summary
Fields Modifier and Type Field Description protected List<Set<V>>
allMaximalCliques
The resultprotected Graph<V,E>
graph
The underlying graphprotected int
maxSize
Size of biggest maximal clique found.protected long
nanos
Timeout in nanosecondsprotected boolean
timeLimitReached
Whether the last computation terminated due to a time limit.
-
Constructor Summary
Constructors Constructor Description PivotBronKerboschCliqueFinder(Graph<V,E> graph)
Constructs a new clique finder.PivotBronKerboschCliqueFinder(Graph<V,E> graph, long timeout, TimeUnit unit)
Constructs a new clique finder.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
findCliques(Set<V> p, Set<V> r, Set<V> x, long nanosTimeLimit)
Recursive implementation of the Bron-Kerbosch with pivot.boolean
isTimeLimitReached()
Check the computation has stopped due to a time limit or due to computing all maximal cliques.Iterator<Set<V>>
iterator()
Returns an iterator over all maximal cliques.protected void
lazyRun()
Lazily execute the enumeration algorithm.Iterator<Set<V>>
maximumIterator()
Create an iterator which returns only the maximum cliques of a graph.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface java.lang.Iterable
forEach, spliterator
-
-
-
-
Field Detail
-
graph
protected final Graph<V,E> graph
The underlying graph
-
nanos
protected final long nanos
Timeout in nanoseconds
-
timeLimitReached
protected boolean timeLimitReached
Whether the last computation terminated due to a time limit.
-
maxSize
protected int maxSize
Size of biggest maximal clique found.
-
-
Method Detail
-
lazyRun
protected void lazyRun()
Lazily execute the enumeration algorithm.
-
findCliques
protected void findCliques(Set<V> p, Set<V> r, Set<V> x, long nanosTimeLimit)
Recursive implementation of the Bron-Kerbosch with pivot.- Parameters:
p
- vertices to consider adding to the cliquer
- a possibly non-maximal cliquex
- vertices which must be excluded from the cliquenanosTimeLimit
- time limit
-
iterator
public Iterator<Set<V>> iterator()
Description copied from interface:MaximalCliqueEnumerationAlgorithm
Returns an iterator over all maximal cliques.- Specified by:
iterator
in interfaceIterable<V>
- Specified by:
iterator
in interfaceMaximalCliqueEnumerationAlgorithm<V,E>
- Returns:
- an iterator over all maximal cliques
-
maximumIterator
public Iterator<Set<V>> maximumIterator()
Create an iterator which returns only the maximum cliques of a graph. The iterator computes all maximal cliques and then filters them by the size of the maximum found clique.- Returns:
- an iterator which returns only the maximum cliques of a graph
-
isTimeLimitReached
public boolean isTimeLimitReached()
Check the computation has stopped due to a time limit or due to computing all maximal cliques.- Returns:
- true if the computation has stopped due to a time limit, false otherwise
-
-