Package org.jgrapht.generate
Class GnpRandomBipartiteGraphGenerator<V,E>
- java.lang.Object
- 
- org.jgrapht.generate.GnpRandomBipartiteGraphGenerator<V,E>
 
- 
- Type Parameters:
- V- the graph vertex type
- E- the graph edge type
 - All Implemented Interfaces:
- GraphGenerator<V,E,V>
 
 public class GnpRandomBipartiteGraphGenerator<V,E> extends Object implements GraphGenerator<V,E,V> Create a random bipartite graph based on the $G(n, p)$ Erdős–Rényi model. See the Wikipedia article for details and references about Random Graphs and the Erdős–Rényi model . The user provides the sizes $n_1$ and $n_2$ of the two partitions $(n1+n2=n)$ and the probability $p$ of the existence of an edge. The generator supports both directed and undirected graphs.- Author:
- Dimitrios Michail
- See Also:
- GnmRandomBipartiteGraphGenerator
 
- 
- 
Constructor SummaryConstructors Constructor Description GnpRandomBipartiteGraphGenerator(int n1, int n2, double p)Create a new random bipartite graph generator.GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, long seed)Create a new random bipartite graph generator.GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, Random rng)Create a new random bipartite graph generator.
 - 
Method SummaryAll Methods Instance Methods Concrete Methods Modifier and Type Method Description voidgenerateGraph(Graph<V,E> target, Map<String,V> resultMap)Generates a random bipartite graph.Set<V>getFirstPartition()Returns the first partition of vertices in the bipartite graph.Set<V>getSecondPartition()Returns the second partitions of vertices in the bipartite graph.- 
Methods inherited from class java.lang.Objectclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 - 
Methods inherited from interface org.jgrapht.generate.GraphGeneratorgenerateGraph
 
- 
 
- 
- 
- 
Constructor Detail- 
GnpRandomBipartiteGraphGeneratorpublic GnpRandomBipartiteGraphGenerator(int n1, int n2, double p)Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$ and the bipartite graph has one partition with size $n_1$ and one partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
- n1- number of vertices of the first partition
- n2- number of vertices of the second partition
- p- edge probability
 
 - 
GnpRandomBipartiteGraphGeneratorpublic GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, long seed)Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
- n1- number of vertices of the first partition
- n2- number of vertices of the second partition
- p- edge probability
- seed- seed for the random number generator
 
 - 
GnpRandomBipartiteGraphGeneratorpublic GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, Random rng)Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
- n1- number of vertices of the first partition
- n2- number of vertices of the second partition
- p- edge probability
- rng- random number generator
 
 
- 
 - 
Method Detail- 
generateGraphpublic void generateGraph(Graph<V,E> target, Map<String,V> resultMap) Generates a random bipartite graph.- Specified by:
- generateGraphin interface- GraphGenerator<V,E,V>
- Parameters:
- target- the target graph
- resultMap- not used by this generator, can be null
 
 - 
getFirstPartitionpublic Set<V> getFirstPartition() Returns the first partition of vertices in the bipartite graph. This partition is guaranteed to be smaller than or equal in size to the second partition.- Returns:
- one partition of the bipartite graph
 
 
- 
 
-