Package org.jgrapht.generate
Class GnpRandomBipartiteGraphGenerator<V,E>
- java.lang.Object
-
- org.jgrapht.generate.GnpRandomBipartiteGraphGenerator<V,E>
-
- Type Parameters:
V
- the graph vertex typeE
- the graph edge type
- All Implemented Interfaces:
GraphGenerator<V,E,V>
public class GnpRandomBipartiteGraphGenerator<V,E> extends Object implements GraphGenerator<V,E,V>
Create a random bipartite graph based on the $G(n, p)$ Erdős–Rényi model. See the Wikipedia article for details and references about Random Graphs and the Erdős–Rényi model . The user provides the sizes $n_1$ and $n_2$ of the two partitions $(n1+n2=n)$ and the probability $p$ of the existence of an edge. The generator supports both directed and undirected graphs.- Author:
- Dimitrios Michail
- See Also:
GnmRandomBipartiteGraphGenerator
-
-
Constructor Summary
Constructors Constructor Description GnpRandomBipartiteGraphGenerator(int n1, int n2, double p)
Create a new random bipartite graph generator.GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, long seed)
Create a new random bipartite graph generator.GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, Random rng)
Create a new random bipartite graph generator.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
generateGraph(Graph<V,E> target, Map<String,V> resultMap)
Generates a random bipartite graph.Set<V>
getFirstPartition()
Returns the first partition of vertices in the bipartite graph.Set<V>
getSecondPartition()
Returns the second partitions of vertices in the bipartite graph.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.jgrapht.generate.GraphGenerator
generateGraph
-
-
-
-
Constructor Detail
-
GnpRandomBipartiteGraphGenerator
public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p)
Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$ and the bipartite graph has one partition with size $n_1$ and one partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionp
- edge probability
-
GnpRandomBipartiteGraphGenerator
public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, long seed)
Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionp
- edge probabilityseed
- seed for the random number generator
-
GnpRandomBipartiteGraphGenerator
public GnpRandomBipartiteGraphGenerator(int n1, int n2, double p, Random rng)
Create a new random bipartite graph generator. The generator uses the $G(n, p)$ model when $n = n_1 + n_2$, the bipartite graph has partition with size $n_1$ and a partition with size $n_2$. An edge between two vertices of different partitions is included with probability $p$ independent of all other edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionp
- edge probabilityrng
- random number generator
-
-
Method Detail
-
generateGraph
public void generateGraph(Graph<V,E> target, Map<String,V> resultMap)
Generates a random bipartite graph.- Specified by:
generateGraph
in interfaceGraphGenerator<V,E,V>
- Parameters:
target
- the target graphresultMap
- not used by this generator, can be null
-
getFirstPartition
public Set<V> getFirstPartition()
Returns the first partition of vertices in the bipartite graph. This partition is guaranteed to be smaller than or equal in size to the second partition.- Returns:
- one partition of the bipartite graph
-
-