Package org.jgrapht.generate
Class GnmRandomBipartiteGraphGenerator<V,E>
- java.lang.Object
-
- org.jgrapht.generate.GnmRandomBipartiteGraphGenerator<V,E>
-
- Type Parameters:
V
- the graph vertex typeE
- the graph edge type
- All Implemented Interfaces:
GraphGenerator<V,E,V>
public class GnmRandomBipartiteGraphGenerator<V,E> extends Object implements GraphGenerator<V,E,V>
Create a random bipartite graph based on the $G(n, M)$ Erdős–Rényi model. See the Wikipedia article for details and references about Random Graphs and the Erdős–Rényi model . The user provides the sizes $n_1$ and $n_2$ of the two partitions $(n_1+n_2=n)$ and a number $m$ which is the total number of edges to create. The generator supports both directed and undirected graphs.- Author:
- Michael Behrisch, Dimitrios Michail
- See Also:
GnpRandomBipartiteGraphGenerator
-
-
Constructor Summary
Constructors Constructor Description GnmRandomBipartiteGraphGenerator(int n1, int n2, int m)
Create a new random bipartite graph generator.GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, long seed)
Create a new random bipartite graph generator.GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, Random rng)
Create a new random bipartite graph generator.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
generateGraph(Graph<V,E> target, Map<String,V> resultMap)
Generates a random bipartite graph.Set<V>
getFirstPartition()
Returns the first partition of vertices in the bipartite graph.Set<V>
getSecondPartition()
Returns the second partitions of vertices in the bipartite graph.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.jgrapht.generate.GraphGenerator
generateGraph
-
-
-
-
Constructor Detail
-
GnmRandomBipartiteGraphGenerator
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m)
Create a new random bipartite graph generator. The generator uses the $G(n, m)$ model when $n = n1 + n2$ and the bipartite graph has one partition with size $n_1$ and one partition with size $n_2$. In this model a graph is chosen uniformly at random from the collection of bipartite graphs whose partitions have sizes $n_1$ and $n_2$ respectively and $m$ edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionm
- the number of edges
-
GnmRandomBipartiteGraphGenerator
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, long seed)
Create a new random bipartite graph generator. The generator uses the $G(n, m)$ model when $n = n1 + n2$ and the bipartite graph has one partition with size $n_1$ and one partition with size $n_2$. In this model a graph is chosen uniformly at random from the collection of bipartite graphs whose partitions have sizes $n_1$ and $n_2$ respectively and m edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionm
- the number of edgesseed
- seed for the random number generator
-
GnmRandomBipartiteGraphGenerator
public GnmRandomBipartiteGraphGenerator(int n1, int n2, int m, Random rng)
Create a new random bipartite graph generator. The generator uses the $G(n, m)$ model when $n = n_1 + n_2$ and the bipartite graph has one partition with size $n_1$ and one partition with size $n_2$. In this model a graph is chosen uniformly at random from the collection of bipartite graphs whose partitions have sizes $n_1$ and $n_2$ respectively and $m$ edges.- Parameters:
n1
- number of vertices of the first partitionn2
- number of vertices of the second partitionm
- the number of edgesrng
- random number generator
-
-
Method Detail
-
generateGraph
public void generateGraph(Graph<V,E> target, Map<String,V> resultMap)
Generates a random bipartite graph.- Specified by:
generateGraph
in interfaceGraphGenerator<V,E,V>
- Parameters:
target
- the target graphresultMap
- not used by this generator, can be null
-
getFirstPartition
public Set<V> getFirstPartition()
Returns the first partition of vertices in the bipartite graph. This partition is guaranteed to be smaller than or equal in size to the second partition.- Returns:
- one partition of the bipartite graph
-
-