V - the graph vertex typeE - the graph edge typepublic class ColorRefinementAlgorithm<V,E> extends Object implements VertexColoringAlgorithm<V>
alpha coloring as described in the following
 paper: C. Berkholz, P. Bonsma, and M.
 Grohe. Tight lower and upper bounds for the complexity of canonical colour refinement. Theory of
 Computing Systems, 60(4), p581--614, 2017.
 
 The complexity of this algorithm is $O((|V| + |E|)log |V|)$.
VertexColoringAlgorithm.Coloring<V>, VertexColoringAlgorithm.ColoringImpl<V>| Constructor and Description | 
|---|
| ColorRefinementAlgorithm(Graph<V,E> graph)Construct a new coloring algorithm. | 
| ColorRefinementAlgorithm(Graph<V,E> graph,
                        VertexColoringAlgorithm.Coloring<V> alpha)Construct a new coloring algorithm. | 
| Modifier and Type | Method and Description | 
|---|---|
| VertexColoringAlgorithm.Coloring<V> | getColoring()Calculates a canonical surjective k-coloring of the given graph such that the classes of the
 coloring form the coarsest stable partition that refines alpha. | 
public ColorRefinementAlgorithm(Graph<V,E> graph, VertexColoringAlgorithm.Coloring<V> alpha)
graph - the input graphalpha - the coloring on the graph to be refinedpublic VertexColoringAlgorithm.Coloring<V> getColoring()
getColoring in interface VertexColoringAlgorithm<V>Copyright © 2019. All rights reserved.